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SUMMARY

I As a Phase I effort of the Small Business Innovative Research (SBIR) Program, this

work tests the feasibility of an approach to solve a problem announced in the SBIR

solicitation of October 1987. This final report for Phase I shows that a concept proposed

by Planning Systems, Incorporated (PSI) to address topic N88-6, the identification of

tactically significant acoustic environments, has demonstrated feasibility and warrants

follow-on funding in Phase II. PSI's approach is to use neural network technology in

concert with complex empirical orthogonal function (CEOF) decomposition of the Gulf

Stream and a Naval Ocean Research and Development Activity (NORDA) edge detection

procedure, to identify the Gulf Stream in infrared (IR) imagery of the western North Atlantic

Ocean.
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I PRELIMINARY NEURAL NETWORK DETECTION OF A GULF STREAM IN
IMAGES OF SEA SURFACE TEMPERATURE GRADIENTS

1.0 INTRODUCTION AND BACKGROUNDI
1.1 Introduction

The sea surface is teeming with thermal structure detectable by satellite infrared

sensors. Present sensors are capable of 1 km horizontal resolution with 0.51C accuracy
I under cloud-free conditions (Figure 1). Such sensors can detect ocean fronts, shingles,

rings, and eddies -- structures caused by a variety of atmospheric, oceanographic, and

I coastal processes. For Naval applications, however, only those with deep reaching (on the

order of 100 m) variation in sound speed are of tactical significance.I
The opportunity exists to select from the wide variety of surface thermal structures

those associated with deep reaching sound speed variations. We know that in the Western

Atlantic the Gulf Stream is important tactically as are the rings (cold and warm core) that it

spawns 1 . The Gulf Stream and its rings contribute to the surface thermal expressions

observed by satellite. Specifically the Gulf Stream is a continuous feature consisting of sea

surface temperature gradients between the longitudes 75°W and 400W. Images can be
* produced in which pixels have been identified that are associated with high horizontal

gradients and thus are candidates for the Gulf Stream edge (Figure 2). The problem

* becomes to discard some of these high gradient edges and connect the rest into a

continuous Gulf Stream. A mathematical description of a continuous Gulf Stream with
realistic meanders has been defined using complex empirical orthogonal functions

(CEOFs) 2 . Ten complex modes give a good description (Figures 3) and serve as a
I compact description of the tactically significant features.

The innovative opportunity is to use the new technology of neural networks to

I connect the gradients of infrared imagery to the complex modes of a continuous, tactically

significant Gulf Stream. If applied successfully, then the great speed and quantitative

I effectiveness of artificial intelligence technology can be brought to bear on the identification

of tactically significant environments from remotely sensed imagery, making more effective

I the U.S. Navy staff assigned to the task in the Fleet.

I
I
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The emerging capabilities of neural networks to reduce noisy imagery to meaningful
information in a fast, highly parallel fashion presents an opportunity to solve longstanding
problems in satellite data analysis. A neural network implemented in either software or

hardware greatly decreases the need for a human operator to visually examine the

infrared imagery since the network operates directly on the data to produce probable Gulf
Stream points. This computer implementation yields another immediate benefit -- the
processing begins as soon as the satellite data are acquired instead of waiting for a

human expert to analyze the data. The necessity for specialized shore based display

equipment and interactive software are also diminished because the network operates on

the digital data directly as it is received from the satellite or automatically processed by

existing edge detection algorithms.

In addition to countering the deficiencies in the present system, a neural network

capable of analyzing infrared imagery opens up new possibilities in tactical use of satellite

data. The capability to analyze satellite imagery without the use of an expert and

extensive workstation introduces the possibility of on-board analysis of data. This enables
properly equipped vessels to make critical decisions based on the latest information in

near real-time without the delays introduced by the present system and its dependence on

shore-based facilities.

1.2 Background

Planning Systems Incorporated (PSI) developed a numerical description of the Gulf

Stream based on complex empirical orthogonal functions (CEOFs) -- the eigenvectors of

an "expectation matrix." The expectation matrix is obtained by averaging a set of matrices

each representing the correlation properties of an individual vector -- in our case a vector

that describes the instantaneous position of the Gulf Stream. This formulation and its

advantages for describing the Gulf Stream are described in detail by Carter 3 . To

summarize that reference, a looping, contorted, but continuous Gulf Stream can be

described iy a vector of complex elements consisting of latitude, longitude pairs. That

vector can be approximated well by a relatively small set of complex coefficients. Each

coefficient must be multiplied with a corresponding CEOF (a.k.a. principal component,

eigenvector, or mode) that is fixed for all time, to produce a set of vectors that when added

together reproduce the original Gulf Stream vector. Speaking geometrically, the CEOFs

constitute a set of basis vectors that span the space of all known Gulf Stream states (i.e.,
locations and shapes); an individual Gulf Stream state (location and shape) is produced

5
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Iby linear combinations of the basis set. Speaking figuratively, the CEOFs are the shapes

of Gulf Stream patterns and the coefficients are the orientations and sizes of the patterns.

Neural networks have been emerging as a new, viable technology for image

analysis and pattern recognition. There are several characteristics of neural networks that

make them effective for analyzing large amounts of data rapidly and resistant to noise in

I the data. Neural networks are composed of many simple computational units

(corresponding to biological neurons) that work in unison to process information. There is
not programming of the network in the traditional sense; rather the weights that connect the

neurons are "learned" by the network through repeated applications of input data for which

the desired result is known. Thus, a network can be presented with an infrared image or

other input data, and it can process that data based on the information presented during

training. The network is tolerant of noise since it has learned the salient features of an
image during training, and the noise is in some sense averaged out. A number of neural

models for pattern recognition have recently produced promising results and are now

being employed on larger applications. Among the more prominent neural paradigms

used are the Neocognitron 4 and Back-Propagation model 5 .

IThe Naval Ocean Research and Development Activity (NORDA) Remote Sensing

Branch is already performing research into the interpretation of imagery data and has

developed an edge-detection algorithm to compute the position of sea surface

temperature (SST) gradient fronts in infrared (IR) imagery 6 . The immediate need is to
-1identify the Gulf Stream among the fronts. To say it another way, the Gulf Stream is the

pattern to be recognized in a NORDA edge image, and other fronts constitute noise in that

Hedge image.

The opportunity exists, therefore, to explore the capacity of neural networks to

recognize the Gulf Stream pattern (represented by CEOF coefficients) within the noise of a
NORDA SST edge image.

6



2.0 TECHNICAL APPROACH

2.1 Objectives

The Phase I work has as its objective to test whether a credible Gulf Stream can be

produced by a neural network that has inputs derived from imagery, and has CEOF

coefficients as outputs.

2.2 Issues

The basic capability at risk during Phase I is whether a neural network can produce

meaningful coefficients for complex empirical orthogonal functions (CEOFs) whose

structures were not available to the network. That is, are tho patterns represented by

coefficients of CEOFs appropriate for neural network technology. This risk resides in

several detailed issues that require testing during Phase I. We presume that attributes of

neural networks, i.e. capability to recognize patterns in noisy imagery, will be attained in

Phase II if we can demonstrate suitability of a CEOF coefficient as a "pattern."

We must determine the neural network connections and weights among nodes that

produce meaningful values for CEOF coefficients. These properties of the network are

determined by applying one of several candidate learning algorithms operating on an

initially randomly connected network and an extensive training set. This leads to several

issues.

* What constitutes an appropriate training set for the network?

• What is the criterion for a meaningful CEOF coefficient?

* What, if any, neural network training procedure is capable of producing

meaningful coefficients for CEOFs from the chosen training set?

• What is an appropriate configuration of nodes and layers to produce meaningful

CEOF coefficients?

7
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i
* How sensitive to the configuration of hidden layers and nodes is the production

of meaningful CEOF coefficients?

CEOFs computed by Molinelli and Flanigan 2 were expressed as vectors with
elements every ten nautical miles downstream. Operational use would provide latitude

and longitudes of a possible Gulf Stream location derived from SST edge imagery that

could not be associated a priori with distance downstream. This leads to the next issue.

Can input nodes representing positions on a latitude-longitude grid produce
meaningful CEOF coefficients?

U Once the above issues have been resolved it becomes appropriate to work out

details of noise discrimination, conditioning of input data, and increase in resolution and

accuracy of the neural network output. But unless these first issues are resolved, the use

of neural networks for identification of the Gulf Stream or any acoustically significant front
* can not be considered feasible.

n 2.3 Approach

Our approach is to use a series of actual Gulf Streams produced by NORDA

between January 1986 and June 1987 to develop a neural network and test its

I capabilities. These Gulf Streams are part of the Mesoscale Product7 and are defined

between longitudes 50°W and 750W as shown in Figure 3. They are derived by human

analyst using not only IR SST imagery but also GEOSAT altimetric profiles. There are 86

Gulf Streams represented by latitude-longitude pairs at inflection points stored in computer

files; the complete set is listed in Table 1. This set of Gulf Streams constitute our first

I candidate training set.

We use the CEOF software already developed in previous work2 . New CEOFs

were defined for the above data set. To illustrate these modes we plot the ten dominant

modes in Figure 4; please recognize that in order to produce a graph that is easily

interpreted, we do not plot the modes alone, but instead, plot the modes after multiplication

by complex coefficients that span the range of observed coefficients in the set, and, in the

case of modes greater than one, add the result to the mean value of mode 1. To

demonstrate feasibility we consider it sufficient to define the values of the first three mode

I
3l
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Table 1. List of 86 Gulf Streams Pairs at Inflection Points Stored in I

Computer Files

I
FILE NO. NAME DATE FILE NO. NAME DATE

1 MESO002.DAT JAN 10, 1986 44 MESOO57.DAT AUG 29, 1986
2 MESO003.DAT MAR 10, 1986 45 MESO058.DAT SEP 3, 1986
3" MESO004.DAT FEB 21, 1986 46 MES0059.DAT SEP 5, 1986
4 MESO005.DAT FEB 12, 1986 47 MESOO06.DAT SEP 10, 1985
5 MESO006.DAT FEB 14, 1986 48 MESO061.DAT SEP 12, 1986
6 MESOO07.DAT FEB 19, 1986 49' MESO062.DAT NOV 24, 1986
7 MESO00S.DAT FEB 21, 1986 50 MESO063.DAT NOV 28, 1986
8 MESO009.DAT FEB 26, 1986 51 MESOO64.DAT DEC 3,1986
9 MESO010.DAT FEB 28, 1986 52* MESO067.DAT DEC 12. 1986 I
10 MESO01 I.DAT MAR 5, 1986 53 MESO068.DAT DEC 17, 1986
11 MESO012.DAT MAR 7, 1986 54 MESO069.DAT DEC 19, 1986
12 MESOOR3.DAT MAR 12, 1986 55 MESO07O.DAT DEC 23, 1986
13 MESO014.DAT MAR 14,1986 56 MESOO72.DAT MAY 30,1986
14 MESO015.DAT MAR 19, 1986 57 MESOO74.DAT JAN 9, 1987
15 MESO016.DAT MAR 21, 1986 58 MESO076.DAT JAN 16, 1987
16 MES0017.DAT MAR 26, 1986 59 MESO078.DAT JAN 30, 1987
17 MESO019.DAT MAR 28, 1986 60 MESO079.DAT FEB 6, 1987
18" MESO020.DAT APR 2,1986 61 MESO080.DAT FEB 11, 1987
19 MESO021.DAT APR 4,1986 62 MESO0,I .DAT FEB 11, 1987
20 MESO022.DAT APR 9, 1986 63 MESOO82.DAT FEB 13,1987
21 MESO024.DAT APR 16, 1986 64 MESO0,6.DAT FEB 27, 1987
22 MESO02S.DAT APR 16, 1986 65 MESO0,7.DAT MAR 4, 1987
23 MESO026.DAT APR 23, 1986 66 MESOO88.DAT MAR 6, 1987
24 MESO027.DAT APR 25, 1986 67 MESOO89.DAT MAR 11, 1987
25 MESO029.DAT MAY 7, 1986 68 MESO091.DAT MAR 23, 1987
26 MESO032.DAT MAY 16, 1986 69 MESOO92.DAT MAR 23, 1987
27 MESO033.DAT MAY 21, 1986 70 MESO093.DAT MAR 27, 1987
28" MESO034.DAT MAY 23, 1986 71 MESOO94.DAT APR 1, 1987
29 MESO040.DAT JUN 18, 1986 72" MESO095.DAT APR 3, 1986
30 MESOO4I .DAT JUN 20, 1986 73 MESO097.DAT APR 10, 1987
31 MESOO42.DAT JUN 25, 1986 74 MESO098.DAT APR 14, 1987
32 MES0043.DAT JUN 27, 1986 75 MESOO99.DAT APR 16, 1987
33 MESOO44.DAT JUL 2, 1986 76 MESOl1l .DAT APR 24, 1987I
34 MESOo4o.DAT JUL 9, 1986 77 MES1o2.DAT APR 28,1987
35 MESOo46.DAT JUL 11, 1986 78 MESOIo3.DAT MAY 1, 1987
36 MESOO47.DAT JUL 16, 1986 79 MESO1O6.DAT MAY 12, 1987
37 MESOo49.DAT JUL 30, 1986 80 MESO1,.DAT MAY 15, 1987
38 MESooS.oDAT AUG 1,1986 81 MESO1o8.DAT MAY 19,1987
39 MESoCoI.DAT AUG 6,.1986 82 MESOo.oAT MAY 22,.1987
40' MESOO52.DAT AUG 8, 1986 83 MESOl110.DAT MAY 27,1987
42 MESOO55.DAT AUG 22,1986 84 MESOl 14.DAT JUN 9, 1987I
41 MESO063.DAT AUG 13, 1986 84 MES013.DAT JUN 5, 1987
43 MESOOSO.DAT AUG 27, 1986 86 MESO1 15.DAT JUN 12, 1987

'WITHELD FROM TRAINING SET FOR TESTING I
I
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I coefficients. Together these three modes account for more than 97% of the displacements

of the Gulf Stream. Higher accuracy could be attempted in Phase II by using more modes.

As a second candidate for the training set, we obtained NORDA edge images such

as shown in Figure 2. However, there are only a few dozen views of the sea surface clear

enough to span the domain during our 18 months of Mesoscale Product Gulf Streams.

Our previous experience with neural network training led us to conclude that a

substantially larger set of images would be required for training to converge in the
presence of the noise (other SST fronts) in these images. Nevertheless, we did obtain

from NORDA six warmest-pixel composite SST images and the resulting edge images, as

well as tihe nine individual SST images that contributed to the composites, and their edge
images. These are listed in Table 2. In all cases the edges were computed using the
16x16 pixel option of the edge detection software developed at NORDA by Holyer and

Peckinpaugh 6 because the other options produced perceptibly more fine grained noise.

Even though the edge images could not be used as a training set, we did intend to use

these images as test cases for the performance of the network.

*Table 2. Images for which Edges are Available

IDates of Ed Dates of Edges
April 14-17, 1986 May 24, 1986

May 13-16, 1986 May 31,1986

May 16, 1986 May 31-June 3, 1986
May 17, 1986 June 3, 1986

May 15-18, 1986 June 5, 1986

May 21, 1986 June 3-6, 1986

May 23, 1986 June 10, 1986
May 21-24, 1986

We agreed that a measure of how meaningful a set of CEOF coefficients generated

by a neural network is should be the correlation between the coefficients produced by the
neural network and the actual values produced by the CEOF software from the appropriate

3 Mesoscale Product. We would take the coefficients in a test case to be meaningful if they

are correlated with the actual values with a corelation coefficient of 0.8 or better. For

I



I
I

cases in which there are too few pairs to compute correlation, then agreement of mode
coefficients within 20% would be considered meaningful.

We use the commercially available software package, Neuralworks, to establish

which training procedure generates a network whose output best converges to the actual

coefficients of the training set. Best, in this context, means fewest number of training steps
and the smallest discrepancies between the network output and the training set
coefficients. Our input in this case is just the 132 latitude-longitude pairs available in each

computer file for one Gulf Stream, i.e., 264 nodes. Our output is a set of six nodes--real

and complex parts of three CEOF coefficients. We also use the commercial software to
vary the number of hidden layers and the number of their nodes. Parameters of the

learning algorithm, number of nodes, and scaling of input and output values are all

modified empirically at this stage in order to achieve convergence.

This commercial software accesses only limited memory and can not handle the

vast input arrays inherent in satellite imagery. Thus our next step is to implement the best

training algorithm in a high level programming language (C) under a virtua! memory
operating system (UNIX) so that two dimensional grid values analogous to pixel values

can be used as input. The increase in the number of input nodes requires an increase in
the number of hidden nodes. We emulate pixel type input with a 50x50 point grid, giving
2500 input nodes -- an increase by a factor of 10 over the previous case.

At this point we must train this new grid-input network, rewrite our Gulf Stream I
profiles into this grid type format, and test the grid-input network for convergence. As

before, parameters of the learning algorithm number of nodes, and scaling of input and
output values are all modified empirically at this stage in order to achieve convergence.
We train this network finally with only 77 of the available 86 Gulf Streams, leaving a

randomly selected 9 as a test set. I
When convergence is achieved, it is appropriate to run the fully trained network on

any of the 9 test Gulf Streams. The coefficients produced by the network are then

compared to the actual coefficients to determine whether they are well correlated.

We then planned to test the performance of the network with an IR edge image I
projected onto the input grid. If the performance of the network is degraded, we would

then have to define a new training S3t made up of simulated noisy edges. Such a set

13
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could be constructed from Mesoscale Products with random sections of random length

missing and with random segments of noise added. The statistics of this random noise

may have to be matched carefully to the statistics of SST front noise observed in the six

* composite images.

Finally, we expected to quantify the performance of the network with statistical

measures such as mean and root mean difference between network and Mesoscale
Product Gulf Streams, and significance level for the differences.I
2.4 Apparatus

Neuralworks software for which we serve as a beta test site and several INTEL
80386 based microcomputers (386 PC) were used. Neuraiworks operates under DOS but

is limited in memory, so the 50x50 latitude longitude grid had to be implemented in the

virtual memory environment of UNIX on the 386 machines. Imagery is displayed on EGA

graphic monitors and hardcopies made on a Laserwriter for which PostScript code had to

be written.I
3.0 RESULTS ACHIEVED

The coefficients we can generate with the Neuralworks network are in excellent

agreement with the actual coefficients in the training set. Figure 5 shows how the actual

values of the real and imaginary parts of the first three CEOF modes vary over the 86 Gulf
Streams used as the training set. Also plotted in Figure 5 are the values produced by the

trained network (which is called the 264-10-6 network for reasons soon to be evident) as

each Gulf Stream is input to it. The close agreement between the two curves for each

coefficient indicates that the network has converged. A neural network can produce

meaningful coefficients for CEOF modes. A neural network can generate a continuous

I Gulf Stream.

We can quantify this agreement by computing for each coefficient a mean and a
variance over the ensemble of 86 Gulf Streams; these are listed in Table 3. Table 3 shows

that the means of the Neuralworks network typically agree with the actual mean within

3.6%. But what is more important, the 264-10-6 network also mimics the variance in Gulf

Stream coefficients -- typically hitting the variance within 11.8% also. The correlation

I coefficient for the six sets of CEOF mode coefficients is typically better than 0.98.

* 14
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Figure 5. Excellent agreement between neural network produced and actual mode

coefficients for the training set. Here the network is the 264-40-6 network
implemented in Neuralworks software. The real and complex parts of the first

three modes (plots a through f) are scaled according to Table 4 to fall

between 0 and 1 and are plotted against the sequence of Gulf Stream axes
from NORDA's Mesoscale Products between January 1986 and June 1987.
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Figure 5. (a) & (b)
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Figure 5. (continued) (c) & (d)
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Table 3. Mean 8 Variance of 86 Streams for 1 st 3 Modes

Root Mean Square
Difference

Mode Actual Actual 264-10-6 264-10-6 between Network
Coeff. Mean Variance Mean Variance & Actual

1, real .36686 .01994 .32810 .01669 .00236
1, imag. .51797 .00703 .5436o .00362 .00526
2, real .62294 .02015 .61439 .02122 .00041
2, imag. .52452 .00795 .53376 .00809 .00019
3, real .50531 .00785 .50749 .00761 .00009
3, imag. .49391 .00653 .50644 .00650 .00025

This good agreement is obtained with the following network parameters selected
through experiment. The learning algorithm is back propagation5; convergence is
achieved with 100,000 iterations through the training set with the learning coefficient set to
0.9 and the momentum coefficient set to 0.6. The number of hidden layers is 1; the
number of nodes on that layer is 10 (hence the network consists of 264-10-6 input-
hiddden-output nodes, respectively). The coefficients placed or retrieved at the six output
nodes must be separately scaled to range between the values of 0.2 and 0.8 in order for

the higher mode coefficients to converge closely. The scaling is presented in Table 4.

Table 4. Scaling Factors to Convert Values at Output Nodes of the Network
into CEOF Coefficients

Network
Output Multiply Node Add Node

Node Value by Value to
1 70.161 670.447
2 34.832 509,545
3 69.680 -42.504
4 35.872 -18.819
5 42.544 -21.590
6 32.653 -16.079
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I

I We successfully implemented a new network in the C programming language that would

operate on input nodes arranged as a 50x50 grid. The Mercator Projection region

between 34 0N and 450 N latitude and 750 W and 50°W longitude is mapped into this

50x50 grid. The nominal resolution of the grid is 50 km. The 86 Mesoscale Gulf Streams

H are mapped onto this grid (Figure 6 shows a sample Gulf Stream on the grid) and used as
input to the new neural network. We call the new network the grid-input network, or the

I 2500-40-6 network, to distinguish it from the earlier network. This network contains 40

nodes in one hidden layer, learns using back propagation, and uses the same scaling for

the conversion between output nodes and CEOF coefficients as Table 4. These selections

were made a priori based on the experience with the earlier network; no experiments were
performed to determine whether performance would improve or degrade with different

selections. This network is trained with 77 of the 86 Gulf Streams; 9 Gulf Streams selected

at random were held back for testing (as denoted in Table 1). It converged on its final form

after 150,000 passes through the training set. This convergence took about 7 days of run

time on our 20 megahertz (MHz) machine programmed in C under the UNIX operating

3 system.

Figure 7 shows the variation of coefficients over the training set and the good

agreement with coefficients produced by the grid-input network. Table 5 shows that the
means of the grid-input network typically agree with the actual mean within 0.7% for the

I training set. Again, what is more impoitant, the 2500-40-6 network also matches the
variance in Gulf Stream coefficients -- typically hitting the variance within 13.0% also. The

I correlation coefficient for the six sets of CEOF mode coefficients is better than 0.87. This is

extremely encouraging because these good measures are achieved without optimizing

I the parameters of the network. Of further importance is that the processing by the network

is extremely fast; it takes less than 1 second to produce three complex mode coefficients

I from 50x50 gridded input.

The grid-input network does less well with data in the test set (Figure 8 and Table

I 6), but still achieves agreement within 6.0% for the means, though only within 68% of the

variances. The performance in matching the variance is skewed by poor performance on

3 just two axes because the test set is so small. Figure 8 shows good qualitative agreement

between axis and image. Table 7 lists the correlations for all preceding cases.

I
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Figure 6. Mesoscale Product Gulf Stream mapped to the 50x50 input grid.
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I Mode 1 Coefficient, Real
Training Set and Output of 2500-40-6 Neural Network

ITraining

U !Network
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Figure 7. Same as Figure 5 (plots a through f) but for 2500-40-6 network implemented in

our own C language software operating on the training set. Again, excellent agreement

between network and actual coefficients.
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Figure 7. (continued)
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Table 5. Mean & Variance of 77 Streams in 2500-40-6

Actual Actual 2500-40-6 2500-40-6 RMS Error

Mean Variance Mean Variance

Coef. 1 Real .37633 .01889 .37181 .02065 .00165
Imag .51734 .00696 .51604 .00724 .00024

Coef. 2 Real .61178 .01922 .61864 .02091 .00175
Imag .52384 .00671 .52465 .00741 .00048

Coef. 3 Real .50207 .00707 .50414 .00791 .00112
Imag .49444 .00445 .49694 .00596 .00136 j

Table 6. Mean & Variance of 9 Test Streams

Actual Actual 2500-40-6 2500-40-6 RMS Error

Mean Variance Mean Variance

Coeff 1 Real .32451 .01083 .37834 .02275 .02468
Imag .53443 .00471 .52649 .00726 .00328

Coeff 2 Real .65976 .01118 .62632 .02066 .01529

Imag .52343 .01317 .50572 .00451 .00813

Coeff 3 Real .51534 .00712 .48515 .00488 .00378

Imag .46795 .01119 .48532 .00370 .01652
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Table 7. Correlation Coefficients

Training Traininq Test

264-10-6 2500-40-6 2500-40-6

Coeff 1 Real .981010 .959822 .387440

Imag .597494 .983241 .749872

Coeff 2 Real .992103 .958424 .586563
Imag .993256 .967478 .643265

Coeff. 3 Real .994733 .926524 .782846

Imag .992514 .878790 -. 100011

The trained 2500-40-6 network performs moderately well on noisy edge imagery
also. The edge image of Figure 2 is transformed to the much coarser 50x50 grid to provide

the noisy input shown in Figure 9. In spite of looking nothing like the training set of Gulf

Streams, the input does not cause the network to diverge; in fact, the network generates
quite reasonable coefficients. A graphical comparison of the resulting 3-mode Gulf Stream
is shown in Figure 10 with the actual 3-mode Stream and the edge imagery. The network

Gulf Stream is within 60 nm of the actual for most of its length and properly identifies Gulf

Stream SST edges by crossing over them. This result is encouraging; however, there are
insufficient resources in this Phase I effort to compute the statistical performance of the

network under a range of coarse grid noisy edge images.

Figure 10 also demonstrates that the neural network output is connected to the

CEOF software so as to produce a neural network derived Gulf Stream; therefore, this
result satisfies the final objective of the Phase I research.

The modest successes achieved for a network not optimized for gridded input and

not trained for noisy edges indicate that this neural network is robust, i.e., not unstable over

a range of parameters. We expect the network to achieve better performance with further

experimentation. The fast processing (less than 1 second) of a 50x50 edge image by a

previously trained network is a great strength of the method.
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Figure 9. Edge image mapped to the 50x50 input grid.
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Figure 10. Proximity of 3 modes from grid-input neural networks (open circles) to the 3
modes of the actual Gulf Stream.
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I
4.0 CONCLUSIONS AND RECOMMENDATIONS

I PSI achieved all of our Phase I objectives except the statistical analysis of the
network's performance. In spite of this, the correlations obtained and qualitative

association between a 3-mode reconstructed Gulf Stream and the original IR image does

demonstrate the feasibility of the approach. We conclude that neural networks are a viable
I approach for rapidly recognizing the acoustically significant Gulf Stream in edge imagery.

We recommend that a full fledged neural network be generated that is optimized for
performing on noisy, gridded, higher resolution edge imagery and with enough complex

mode coefficients as output so that sufficient accuracy can be attained. The goal of this
work should be identification of SST edges associated with the Gulf Stream so that Gulf

Stream reconstructions under SST gradients could be accurate within 10 km and

elsewhere within 50 km. The interfaces should also be designed for connection to an
imagery source (such as TESS) and a decision aid destination (such as NORDA

Oceanographic Expert System). Also a methodology should be designed to transport the
neural network/CEOF approach to other Fleet Operational Areas with acoustically

significant fronts observable with satellite imagery.
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